Белорусский государственный
технологический университет
Belarusian State Technological University
Факультеты
ОИВР
Наука
Факультеты Абитуриентам ОИВР Партнёрам Библиотека Одно окно Инженерные классы
Наука
Ученые обнаружили новую и странную разновидность фотогальванического эффекта

Ученые из Уорикского университета (University of Warwick) сообщили об обнаружении ими совершенного нового вида фотогальванического эффекта, который получил название "flexo-photovoltaics". Для создания этого эффекта необходимо взять обычный кристалл кремния и поразить поверхность этого материала чем-нибудь необычайно твердым и острым. А дальнейшие исследования этой разновидности эффекта откроет путь к созданию нового метода преобразования энергии, который может лечь в основу, к примеру, высокоэффективных солнечных батарей.

Современные солнечные батареи, как правило, изготавливаются из кремния, внутри которого устроено множество полупроводниковых p-n переходов, создающих в материале неравномерное электрическое поле. Каждый такой переход, представляющий собой границу областей, наполненных носителями отрицательного электрического заряда (электронами) и положительного заряда (электронными дырками), поглощает фотон света, образуется пара - электрон и дырка, что создает электрический потенциал. У таких солнечных батарей имеется один недостаток - их максимальная эффективность ограничена законами физики, она не может превышать 33,7 процента.

Но у нового фотогальванического эффекта нет подобных ограничений. Единственным ограничением в данном случае является то, что новый эффект возникает лишь в случае использования материалов, не обладающих так называемой центральной симметрией их структуры.

В своей работе исследователи использовали "грубую силу", они взяли и с достаточно большим усилием ударили наконечником атомно-силового микроскопа в поверхность кристалла. Возникшее механическое напряжение было настолько большим, что оно нарушило центральную симметрию структуры кристалла, и на его поверхности начали проявляться новые фотогальванические эффекты. Такой подход сработал по отношению к кристаллам различного типа: титаната стронция, оксида титана и кремния. "У нового фотогальванического эффекта не имеется никаких термодинамических пределов из-за того, что он не основан на использовании полупроводникового p-n перехода" - пишут исследователи.

Пока еще рано говорить о значении, которое будут иметь солнечные батареи на основе нового эффекта. Ориентировочный ответ на этот вопрос могут дать лишь дальнейшие эксперименты и исследования в данном направлении. Кроме этого и со стороны практической реализации имеется масса вопросов.

"Мы видим нечто вроде матрицы микроскопических шипов, нажимающих на поверхность элемента обычной солнечной батареи" - пишут исследователи, - "Это самый простой и понятный способ, но его вряд ли можно отнести к разряду дешевого и разумного решения. Другим вариантом является создание в структуре кремния дефектов, создающих необходимое механическое напряжение, но тогда возникнут вопросы, связанные с надежностью и долговечностью таких солнечных батарей".

И в заключение следует отметить, что ученые собираются продолжать работать в данном направлении, изучая особенности нового фотогальванического эффекта и изыскивая, параллельно с этим, способы, подходящие для его дальнейшего практического применения.

Источник: www.dailytechinfo.org



Опубликовано: 08.05.2018
Больше по рубрике
Жук Cyphochilus стал "прототипом" для создания самого белого материала на свете
16.03.2018
Графеновые наноленты станут проводниками цепей молекулярной электроники
27.02.2018
ДНК-оригами - основа новой технологии высокоточной и скоростной литографии
14.02.2018
Диоксид ванадия - перспективный материал для электроники следующего поколения
14.02.2018
Представлена новая технология «умных» окон, которые обогреют дом благодаря магнитной жидкости
20.01.2018
Создан новый тип источников света, основой которых являются отдельные графеновые наноленты
20.01.2018
Новый миниатюрный спектрометр снабдит смартфоны массой дополнительных полезных функций
03.01.2018
Создана система искусственного интеллекта, рассчитывающая результаты органических химических реакций
13.12.2017
Расшифрована молекулярная структура лесного аромата
12.12.2017
Трехмерная печать "живыми" чернилами позволит создавать уникальные биохимические "фабрики"
07.12.2017