Белорусский государственный
технологический университет
Belarusian State Technological University
ОИВР
Наука
Создано суперадгезивное покрытие, контролируемое при помощи ультрафиолетового света

Немногочисленная группа ученых из Кильского университета (Kiel University), Германия, разработала новую суперадгезивную технологию, использующую принципы, реализованные природой в виде поверхности конечностей гекконов. Мы уже не раз рассказывали об успешных и не очень попытках повторения данных принципов, но практически во всех разработанных технологиях для управления адгезионными свойствами материала использовалось тепло или специализированная электроника. Принцип же управления свойствами материала, разработанного немецкими учеными гораздо более прост: для изменения «липкости» требуется всего лишь осветить его ультрафиолетовым светом с соответствующими параметрами.

Новый материал имеет структуру, состоящую из трех различных слоев. Верхним его слоем является поверхность, покрытая микроскопическими структурами, напоминающими гриб с плоской шляпой. Именно этот слой входит в контакт с поверхностью материала, к которой он прилипает, а высокие адгезионные силы возникают в многочисленных местах контакта «шляпок грибов» с поверхностью другого материала. Основания «ножек грибов» стоят на слое полимера под названием полидиметилсилоксан (polydimethylsiloxane), который, в свою очередь, связан со слоем жидких кристаллов азобензола. И последним слоем также является слой из полидиметилсилоксана, который предохраняет жидкие кристаллы от воздействий со стороны окружающей среды.

Кристаллы азобензола обладают чувствительностью к ультрафиолетовому свету, под его воздействием они меняют свою ориентацию и положение относительно друг друга. В отсутствие ультрафиолетового света верхний слой прилипает и надежно прикрепляется к поверхности другого материала за счет сил Ван-дер-Ваальса. Но стоит только осветить этот «пластырь» ультрафиолетовым светом, как кристаллы азобензола начинают двигаться и отрывать «шляпки грибов» от поверхности, что в несколько раз снижает силу «прилипания». Изменение интенсивности ультрафиолетового освещения позволяет регулировать степень прилипания и при относительно сильном освещении пластырь отделяется от поверхности достаточно легко.

Ученые испытали адгезионные свойства нового материала на объектах из различных материалов, включая стекло и пластик. Сила прилипания пластыря к поверхности достаточно велика для того, чтобы кусок материала относительно небольшой площади был уже в состоянии удерживать вес человека.

Помимо основного преимущества, заключающегося в отсутствии необходимости использования сложных методов управления его адгезионными свойствами, новый материал обладает еще одним положительным качеством - он абсолютно не оставляет никаких следов на поверхности, к которой он был прилеплен ранее. Это, в свою очередь, позволит использовать новый материал не только, как обычную «липучку», но и в «чистых комнатах» промышленных производств, в медицине и в других областях, где требуется чистота и стерильность.

Источник: http://www.dailytechinfo.org



Опубликовано: 31.01.2017
Больше по рубрике
Углекислый газ впервые используют как реагент в промышленности
27.07.2018
Физики впервые получили магнитную сверхтекучую жидкость
11.07.2018
Ученые обнаружили принципиально новый вид фотосинтеза
25.06.2018
Дешевая автоматическая зарядка для электрокаров создана французским стартапом Gulplug
31.05.2018
Создан новый биоматериал, прочность которого превосходит прочность стали и паучьего шелка
25.05.2018
Ученые обнаружили новую и странную разновидность фотогальванического эффекта
08.05.2018
Смена ориентации жидких кристаллов улучшит ЖК-дисплеи
04.05.2018
Электродвигатель впервые полностью напечатали на 3D-принтере
28.04.2018
Добавка графена в бетон сделала его сверхпрочным
24.04.2018
Физики создали в графене ловушки для электронов
14.04.2018