Белорусский государственный
технологический университет
Belarusian State Technological University
ОИВР
Наука
Объяснена необычная упругость графена

Международный коллектив с российскими учеными в своем составе объяснили необычные характеристики эластичности и упругости графена. Исследование опубликовано в Physical Review B, препринт статьи доступен на arXiv.Org.

Графен представляет собой однослойный лист из шестигранных ячеек, образованных атомами углерода. Необычные упругие свойства этого материала, открытого Андреем Геймом и Константином Новоселовым в 2004 году, сделали его перспективной заменой кремния в электронике нового поколения.

Если растягивать привычные нам материалы, такие как, например, резина, вдоль, то они сжимаются поперек. Некоторые материалы при растяжении становятся только толще, потому что их структуры от этого расправляются и разворачиваются. Способность к сжатию или расширению в поперечном размере при растяжении характеризуется при помощи так называемого коэффициента Пуассона, а необычные материалы с отрицательным коэффициентом Пуассона называют ауксетиками. Это название происходит от греческого слова α?ξητικ?ς (auxetikos), означающего «то, что имеет склонность увеличиваться». К ауксетикам относятся, например, некоторые горные породы (в частности, пирит); живые костные ткани, бумага, полимер Gore-Tex.

Поскольку ауксетики не расширяются при нагревании, они не будут создавать механические напряжения и помехи в работе электроники. Физики работают над тем, чтобы соединить обычный материал с ауксетиком, чтобы он не расширялся в приборах. Также ауксетики очень чувствительны к звуковым волнам, и из них можно создать звуковые сенсоры, способные улавливать очень быструю смену колебаний.

Поэтому вопрос, относится ли графен к ауксетикам, интересовал физиков уже много лет, но экспериментально узнать коэффициент Пуассона у него не удавалось. Графен выращивается на подложках и с трудом отсоединяется от них, поэтому измерить коэффициент мешают либо характеристики подложки, либо слишком маленький размер оторвавшегося от них образца, из-за чего к нему негде прикрепить кронштейны для измеримого растяжения. При этом данные теоретических расчетов этого параметра противоречили друг другу.

Российско-немецко-голландская группа ученых смогла разрешить это противоречие, найдя ему объяснение в самой структуре материала, порождающей сложное взаимодействие волн при растяжении. Обычно графен представляют как плоский двумерный лист атомов углерода, но на самом деле по его поверхности бегут изгибные волны – складки, которые стремятся перевести его в «скомканное» состояние. Такие волны возникают у всех образцов графена больше 40-70 ангстрем (так называемая длина Гинзбурга).

«Долгое время теория мембран предсказывала, что из-за этого явления двумерные кристаллы наподобие графена в принципе не могут существовать: они будут все время стремиться сжаться в комок, – поясняет соавтор работы Валентин Качоровский, ведущий научный сотрудник Физико-технического института имени А. Ф. Иоффе и Института теоретической физики имени Л.Д. Ландау. – Как мы видим, это предположение было ошибкой, так как по поверхности графена, помимо изгибных, бегут также обычные волны сжатия-растяжения. Нелинейное взаимодействие двух типов волн не позволяет мембране сжаться в комок».

Когда сила растяжения мала, изгибные волны противостоят ей, и коэффициент Пуассона меняет знак, делая графен ауксетиком. Вся приложенная сила (например, при нагревании) тратится на расправление «складок» этих волн, где запасена дополнительная энергия. При большой силе растяжения изгибные волны графена подавляются, и свойства вещества остаются «классическими».

Работа выполнена в рамках совместного проекта РНФ-DFG (Немецкого научно-исследовательского сообщества) учеными из Института теоретической физики имени Л.Д. Ландау, Физико-технического института имени А.Ф. Иоффе, Института Технологии в Карлсруэ (Германия) и Университета Неймегина (Нидерланды).

Источник: indicator.ru



Опубликовано: 10.04.2018
Больше по рубрике
Углекислый газ впервые используют как реагент в промышленности
27.07.2018
Физики впервые получили магнитную сверхтекучую жидкость
11.07.2018
Ученые обнаружили принципиально новый вид фотосинтеза
25.06.2018
Дешевая автоматическая зарядка для электрокаров создана французским стартапом Gulplug
31.05.2018
Создан новый биоматериал, прочность которого превосходит прочность стали и паучьего шелка
25.05.2018
Ученые обнаружили новую и странную разновидность фотогальванического эффекта
08.05.2018
Смена ориентации жидких кристаллов улучшит ЖК-дисплеи
04.05.2018
Электродвигатель впервые полностью напечатали на 3D-принтере
28.04.2018
Добавка графена в бетон сделала его сверхпрочным
24.04.2018
Физики создали в графене ловушки для электронов
14.04.2018