МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

КОНСПЕКТ ЛЕКЦИЙ

(лекция 3)

для спец. 1-25 01 07, 1- 26 02 03

MUHCK 2014

Лекция 3. Способы преобразования чертежа.

Все задачи в начертательной геометрии разделяют на две основные группы позиционные (на определение взаимного расположения геометрических элементов) и метрические (на определение натуральных величин геометрических элементов).

Решение этих задач, и главным образом метрических, значительно облегчается, если геометрические образы занимают в пространстве частное положение, т.е. параллельны или перпендикулярны к плоскостям проекций.

В этой связи, с целью изменения взаимного расположения объекта проецирования и плоскостей проекций применяют способы преобразования чертежа.

Основными способами преобразования чертежа являются:

- 1) Замена плоскостей проекций;
- 2) Вращения.

Сущность этих способов заключается в следующем:

при *замене плоскостей проекций* положение объекта проецирования относительно плоскостей проекций не изменяется, а плоскости проекций π_1 , π_2 , π_3 заменяют новыми плоскостями, на которые ведется проецирование:

при способе *вращения* плоскость проекций остается неизменная, а изменяется относительно этих плоскостей положение самого предмета.

3.1. Способ замены плоскостей проекций.

Этот способ широко применяют в машиностроении и приборостроении. Сущность способа замены плоскостей заключается в том, что положение точек, линий, плоских фигур, поверхностей в пространстве не изменяется, а система плоскостей проекций π_2 , π_1 дополняется плоскостями, образующими с π_2 и π_1 или между собой систему двух взаимно перпендикулярных плоскостей, принимаемых за плоскости проекций.

Каждая новая система выбирается так, чтобы по отношению к заданным геометрическим элементам она заняла положение более удобное для выполнения требуемого построения.

На рис. 3.1. показано преобразование проекций точки A из системы π_2 и π_1 в систему π_4 , π_1 , в которой вместо плоскости π_2 введена новая плоскость π_4 , а плоскость π_1 осталась неизменной. При этом π_4 перпендикулярна π_1 . В системе π_4 π_1 горизонтальная проекция точки (A') осталась неизменной. Проекция A^{IV} точки A на плоскости π_4 находится от плоскости π_1 на том же расстоянии, что и проекция A^{II} точки на плоскости π_2 .

Порядок построения проекции точки A^{IV} на новой плоскости проекций (рис. 4.2). В новой системе π_4 π_1 из проекции точки (A^I) проводят линию связи, перпендикулярную новой оси проекций π_4/π_1 .

На этой линии связи отмечают расстояние от оси π_4/π_1 до проекции A^{IV} точки на новой плоскости проекций π_4 , равное расстояние от преобразуемой проекции A^{II} точки до оси проекций π_2/π_1 в системе π_2 , π_1 .

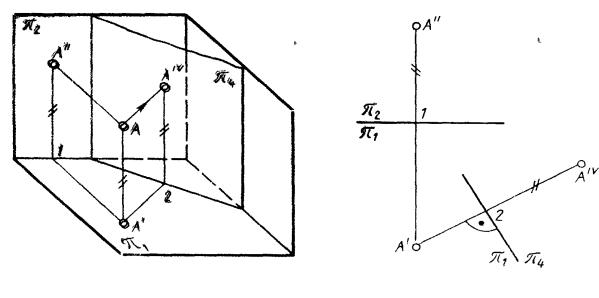


Рис. 3.1. Рис.3.2.

Рассмотрим решение четырех исходных задач способом замены плоскостей проекций:

4.1.1. Преобразовать прямую общего положения в прямую уровня.

Новую проекцию прямой можно построить на новой плоскости проекций π_4 , расположив ее параллельно самой прямой и перпендикулярно одной из плоскостей проекций, т.е. от системы π_2 , π_1 перейти к системе π_4 , π_1 . или π_4 , π_2 . На рис. 3.3. приведен комплексный чертеж прямой **AB** общего положения. Для преобразования ее в прямую уровня необходимо выполнить следующее:

- в одной из плоскостей проекций (в рассматриваемом примере плоскость проекции π_1) проводим новую ось проекций, которая параллельна одной из проекций прямой (в рассматриваемом примере $\pi_1/\pi_4 \parallel \mathbf{A'B'}$);
 - из **A'**, **B'** проводим линии связи перпендикулярные π_1/π_4 ;
 - в дополнительной плоскости проекций π_4 строим проекции A^{IV} , B^{IV} ;
 - соединив проекции A^{IV} , B^{IV} получаем решение задачи.

4.1.2. Преобразовать прямую уровня в проецирующую прямую.

На рис. 3.5 приведен комплексный чертеж горизонтальной прямой уровня **AB**. Чтобы преобразовать ее в проецирующую прямую необходимо новую плоскость проекций π_4 разместить перпендикулярно горизонтальной проекции прямой **A'B'**.

Если требуется построить вырожденную проекцию прямой общего положения, то для ее преобразования проводят две последовательные замены плоскостей проекций (рис.3.6).

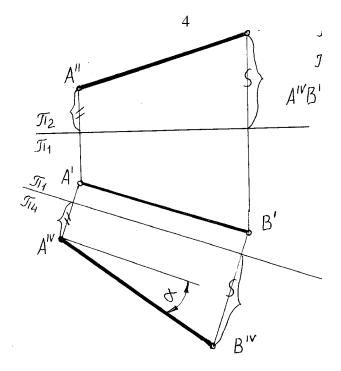
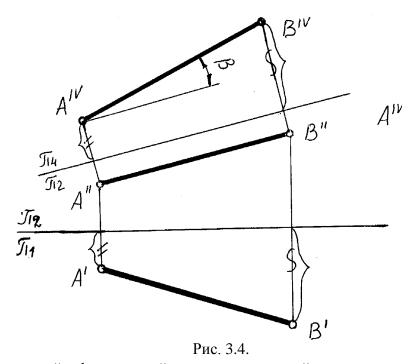



Рис. 3.3.

 α – угол наклона прямой к горизонтальной плоскости проекций π_1 .

 β – угол наклона прямой к фронтальной плоскости проекций.

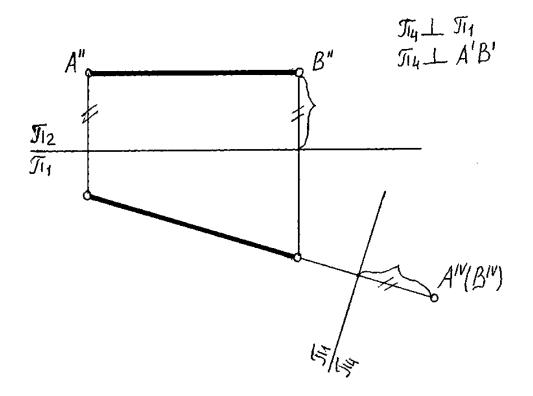
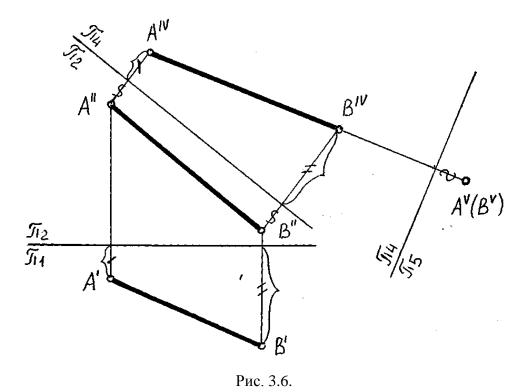



Рис. 3. 5.

3.1.3. Преобразовать плоскость общего положения в проецирующую.

Для решения этой задачи новую плоскость проекций нужно расположить перпендикулярно данной плоскости общего положения и перпендикулярно одной из плоскостей проекций. Это возможно сделать, если учесть, что направление ортогонального проецирования на новую плоскость проекций должно совпадать с соответствующих направлением линий уровня данной плоскости Тогда все линии этого уровня на новой плоскости проекции положения. изображаются точками, которые и дадут «вырожденную» в прямую плоскость (ее проекцию).

На рис. 3.7 приведен комплексный чертеж плоскости общего положения, заданной треугольником АВС. Для того чтобы преобразовать данную плоскость в проецирующую необходимо:

- в горизонтальной плоскости проекций провести проекцию фронтали (например (**A'1'**);
- по вертикальной линии связи находим фронтальную проекцию 1" и строим фронтальную проекцию фронтали А"1";
 - перпендикулярно **A"1"** проводим ось проекций π_2/π_4 ;
 - из **A''**, **B''**, **C''** проводим линии связи, перпендикулярные π_2/π_4 ;
 - в дополнительной плоскости проекций π_4 строим проекции $\mathbf{A^{IV}}, \mathbf{B^{IV}}, \mathbf{C^{IV}};$ соединив проекции $\mathbf{A^{IV}}, \mathbf{B^{IV}}, \mathbf{C^{IV}}$ получаем решение задачи.

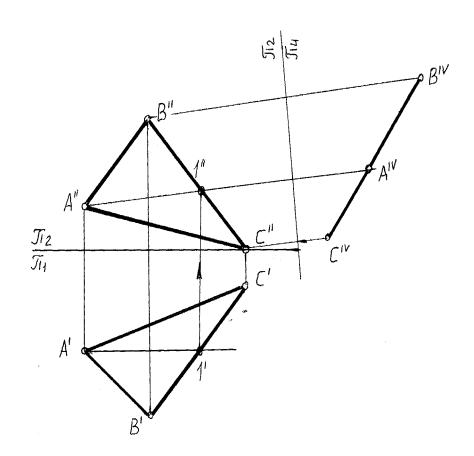


Рис. 3.7.

4.1.4. Преобразовать проецирующую плоскость в плоскость уровня.

Решение этой задачи позволяет определять натуральную величину плоских фигур.

Новую плоскость проекций нужно расположить параллельно заданной плоскости. Если исходное положение плоскости было фронтально-проецирующее, то новое изображение строят в системе π_2/π_4 , а если горизонтально-проецирующее – π_1/π_4 . Новая ось проекций будет расположена параллельно вырожденной проекции проецирующей плоскости.

На рис. 3.8. приведен комплексный чертеж горизонтально-проецирующей плоскости, заданной треугольником ABC. Для преобразования ее в плоскость уровня необходимо выполнить следующее:

- в горизонтальной плоскости проекций провести новую ось проекций π_1/π_4 ., которая параллельная **A' B' C'**;
 - из **A'**, **B'**, **C'** провести линии связи, перпендикулярные π_1/π_4 ;
 - в дополнительной плоскости проекций π_4 построить $\mathbf{A^{IV}}$, $\mathbf{B^{IV}}$, $\mathbf{C^{IV}}$;
 - соединив проекции ${\bf A^{IV}}, {\bf B^{IV}}, {\bf C^{IV}}$ получаем решение задачи.

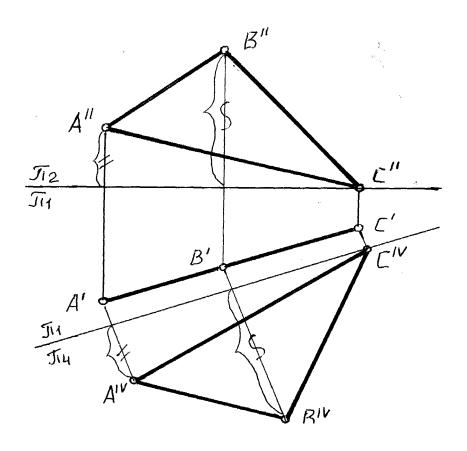


Рис. 3.8.

Если в исходном положении плоскость занимает общее положение, а нужно получить изображение ее как плоскости уровня, то прибегают к двойной замене. Вначале плоскость общего положения преобразуют в проецирующую, затем в плоскость уровня (рис.3.9).

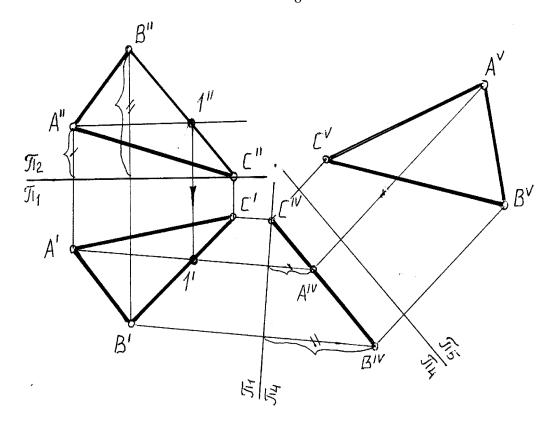


Рис. 3.9

4.2. Способ вращения вокруг проецирующей прямой.

Как известно, при вращении некоторой точки вокруг оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения. Для применения способа вращения в целях преобразования чертежа отметим следующее (рис. 3.10.):

- ось вращения (MN);
- плоскость вращения точки (пл. $\eta \perp (MN)$);
- центр вращения (0; пл. $\eta \cap (MN) = 0$);
- радиус вращения (R, R = |0A|.

В качестве оси вращения обычно используют прямые, перпендикулярные или параллельные плоскости проекций. Вращение точки A на чертеже относительно оси MN перпендикулярной плоскости π_1 , показано на рис. 3.11. Плоскость вращения η параллельна плоскости π_1 и на фронтальной проекции изображена следом η^{II} . Горизонтальная проекция O^I центра вращения совпадает с проекцией M^IN^I оси, а горизонтальная проекция O^IA^I радиуса вращения OA является его натуральной величиной. При вращении точки вокруг вертикальной оси ее горизонтальной проекция перемещается по окружности, а фронтальная проекция — параллельна оси X.

Если точку вращать вокруг оси, перпендикулярной плоскости $\pi 1$, то ее фронтальная проекция будет перемещаться по окружности, а горизонтальная – параллельно оси X. Вращением точки вокруг проецирующей прямой применяют при решении задач, например, для определения натуральной величины отрезка

прямой. Для этого (рис. 3.12.) достаточно ось вращения с проекциями M^IN^I , M^IN^I выбирать так, чтобы она проходила через одну из крайних точек отрезка. Тогда при повороте в точки (вторая крайняя) на угол ϕ отрезок прямой займет положение параллельное плоскости π_2 и, следовательно проецируется на нее в натуральную величину. Одновременно в натуральную величину проецируется угол α наклона отрезка прямой к плоскости π_1 .

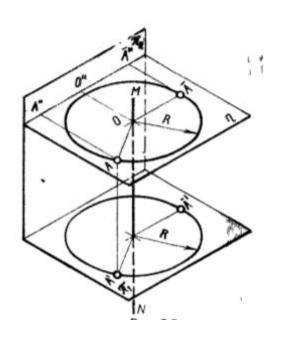


Рис. 3.10.

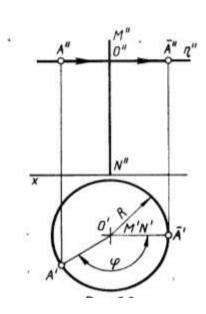
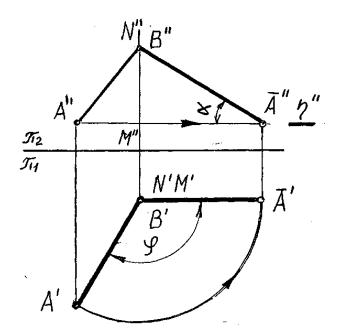



Рис. 3.11.

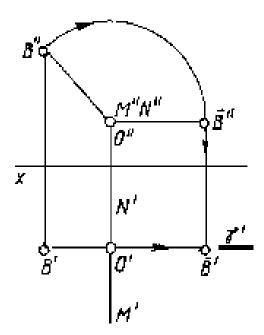


Рис. 3.12.